Safe Real-World Autonomous Driving by Learning to Predict and Plan with a Mixture of Experts
Stefano Pini, Christian S. Perone, Aayush Ahuja, Ana Sofia Rufino Ferreira, Moritz Niendorf, Sergey Zagoruyko
In 2023 IEEE International Conference on Robotics and Automation (ICRA) (previously presented at 2022 NeurIPS ML4AD workshop), 2023
DOI: 10.1109/ICRA48891.2023.10160992
Link: Poject Page Paper
Abstract
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at this https URL.
Recommended citation
@article{pini2022safe,
title={Safe Real-World Autonomous Driving by Learning to Predict and Plan with a Mixture of Experts},
author={Pini, Stefano and Perone, Christian S and Ahuja, Aayush and Ferreira, Ana Sofia Rufino and Niendorf, Moritz and Zagoruyko, Sergey},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={10069--10075},
year={2023},
organization={IEEE}
}