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Face identification (one-to-many)

Comparing an unknown subject’s face with a set 
of known faces

Face Verification (one-to-one)

Comparing two faces in order to determine 
whether they belong to the same person or not
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Face Recognition

?

?



• Also called side information, only few papers have investigated the use of this learning paradigm 
introduced in 2009 by Vapnik et al.1.

• Additional (privileged) knowledge about the training examples is provided only during the training
phase to improve the performance of the system at testing time

• The privileged knowledge is not available at testing time, but the system can leverage on the 
information learned at training time
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Privileged Information

1. Vapnik et al., “A new learning paradigm: Learning using privileged information”, Neural Networks, 2009.

2. Hoffman et al., “Learning with Side Information through Modality Hallucination”, IEEE CVPR, 2016.



• We tackle the face verification task analyzing raw depth images at testing time

• We use shallow Siamese networks to address the limited size of existing depth-based datasets

• We exploit the learning using privileged information paradigm

• We directly detect the identity of a person without using strong a-priori hypotheses, like facial 
landmarks or nose tip localization

Goal & Contributions

5



Training phase:

• The model is composed of three modules: a 
depth, an hybrid and an RGB Siamese network

• Each Siamese network predicts the similarity 
between an input pair of images

• Privileged Information Loss:

𝐿ℎ𝑦𝑏𝑟𝑖𝑑−𝑟𝑔𝑏1,2 =
1

𝑁
 𝑛
𝑁(𝑦𝑛

ℎ𝑦𝑏𝑟𝑖𝑑
− 𝑦𝑛

𝑟𝑔𝑏
)2

• Final Loss:

𝐿 = 𝛼 𝐿ℎ𝑦𝑏𝑟𝑖𝑑−𝑟𝑔𝑏1 + 𝐿ℎ𝑦𝑏𝑟𝑖𝑑−𝑟𝑔𝑏2 +

𝛽 𝐿𝑑𝑒𝑝𝑡ℎ + 𝐿ℎ𝑦𝑏𝑟𝑖𝑑 + 𝐿𝑟𝑔𝑏
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JanusNet Architecture



Testing phase:

• Only the depth and the hybrid network are 
employed for the face verification task

Proposed Model
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JanusNet Architecture



Input:a couple of facial depth maps or RGB images.

Dynamic crop:     𝑤, ℎ𝐻 =
𝑓𝑥,𝑦∙ 𝑅𝑥,𝑦

𝐷

Output: a similarity score in the 0,1 range

Network architecture: 𝑘, 𝑛, 𝑠, 𝑓𝑐 correspond to 
kernel size, no. of feature maps, stride and units

Proposed Model
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Siamese Architecture



• 250k frames from 110 sequences 

• 22 subjects (10 males and 12 females)

• Both depth and RGB frames and skeleton annotations 
frame by frame

• Acquired with Microsoft Kinect One v2 

• Designed for Head and Shoulder Pose estimation

Datasets
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Pandora Dataset1

1. G. Borghi et al. “Poseidon: Face-from-depth for driver pose estimation”, CVPR, 2017.

2. T. Mantecon et al. “Depth-based face recognition using local quantized patterns adapted for range data”, ICIP, 2014.

• 20k frames

• 18 subjects

• Depth frames only

• Acquired with Microsoft Kinect One v2

• Designed for Face Recognition

HRRFaceDatabase2



• We evaluated the privileged information framework, verifying that the JanusNet architecture 
outperforms the single Siamese models.

• Besides, we verified that the face verification accuracy of the proposed model was comparable to a 
well-known deep architecture pre-trained on RGB images.

Results
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Ablation Study

1. Schroff et al., “FaceNet: A Unified Embedding for Face Recognition and Clustering”, CVPR, 2015.

1

Accuracy for the face verification task on the Pandora test set.



• We compare our model with [1, 2] for the face identification task.

• To deal with the one-to-many comparison, JanusNet is used to obtain a similarity score between 
every possible pair of images contained in the dataset. Then, to determine the final identity, we 
combine the results with the following functions.

y = argmax
𝑖

𝐽 𝑠, 𝑠′ , ∀𝑠′ ∈ 𝑆𝑖 y = argmax
𝑖

avg
𝑠′∈𝑆𝑖

𝐽(𝑠, 𝑠′) y = argmax
𝑖

# 𝑆𝑖 𝐽 𝑠, 𝑠′ > 𝑡 }, ∀𝑠′ ∈ 𝑆𝑖
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Comparison on HRRFaceDataset

Competitor results are taken from:

1. T. Mantecon et al. “Depth-based face recognition using local quantized patterns adapted for range data”, ICIP, 2014.

2. T. Mantecon et al. “ Visual face recognition using bag of dense derivative depth patterns”, IEEE SPL, 2016.

Accuracy for the face identification task on the HRRFaceD dataset.



Sequence-based splits:

• {𝑆1, 𝑆2, 𝑆3}: actions performed with constrained movements

• {𝑆4 , 𝑆5}: complex movements, occlusions and camouflage

Angle-based splits:

• {𝐴1} = 𝑠𝜚𝜃𝜎 ∀𝛾 ∈ 𝜚, 𝜃, 𝜎 : −10° ≤ 𝛾 ≤ 10°} frontal faces

• {𝐴2} = 𝑠𝜚𝜃𝜎 ∃𝛾 ∈ 𝜚, 𝜃, 𝜎 : 𝛾 < −10°  𝛾 > 10°} non-frontal faces

• {𝐴3} = 𝑠𝜚𝜃𝜎 ∀𝛾 ∈ 𝜚, 𝜃, 𝜎 : 𝛾 < −10°  𝛾 > 10°} extremely-rotated faces

where 𝜚, 𝜃, 𝜎 are roll, pitch and yaw, respectively.

Results
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Pandora Subsets



Verification accuracy on different sequence subsets

Verification accuracy on different angle subsets

Results
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Pandora Subsets



• We proposed a framework, namely JanusNet, that tackles the face verification task using only depth 
maps at testing time.

• During the training procedure, the model can leverage on RGB images, provided as privileged 
information, to improve its performance at testing time, when only depth maps are available.

• Existing depth datasets provide depth maps of a limited number of subjects. Bigger datasets would 
be useful to further analyze the proposed model and broadly evaluate its generalization capabilities.

Conclusion
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True Positives

False Positives

False Negatives
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Pandora Sequences

Frames from sequences {𝑆1, 𝑆2, 𝑆3} Frames from sequences {𝑆4, 𝑆5}



Learning with Side Information through Modality Hallucination

1. Hoffman et al., “Learning with Side Information through Modality Hallucination”, IEEE CVPR, 2016.
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